
Application Note
Securing the network with secure diversified code

Securing the network with
secure diversified code
July 2020

2

Application Note
Securing the network with secure diversified code

Table of Contents

Introduction ...3

Software diversification...3

AOS ASLR evolution...4

Existing ASLR changes in AOS 8.5.R04...4

Additional ASLR changes in AOS 8.6.R01..6

Deeper dive into the address changes...7

Summary..8

3

Application Note
Securing the network with secure diversified code

Introduction
Every network manager’s nightmare is for an attack on their system that results in losing control
of their network or data is compromised. The number of ways that attackers damage a network
grows every day, ranging from intrinsic vulnerabilities to compromised back doors.

The Alcatel-Lucent Operating System (AOS) running on the Alcatel-Lucent OmniSwitch® family
of switches is hardened with secure diversified code. Secure diversified code uses software
diversification and independent verification and validation (IVV) of the AOS to protect networks
from intrinsic vulnerabilities, code exploits, embedded malware, and potential back doors that
could compromise mission-critical operations. Current and future threats are addressed because
the secured, diversified code technology is continuously applied on every new AOS release.

Software diversification is delivered through Address Space Layout Randomization (ASLR). The
primary purpose of ASLR is to protect an Alcatel-Lucent OmniSwitch® AOS from a buffer overflow
attack. From a technical perspective, a buffer overflow attack is the result of sending a large
amount of data to overwhelm the address buffer and then install a carefully crafted packet with
a malicious payload (software program). Since the buffer is already full, this malicious packet
will be written over other data that an application uses. The packet is designed to contain
patterns that force the program to jump to another address location and execute what the
attacker desires.

Under IVV, a third party experienced in cybersecurity performs analysis and testing of the
AOS switch software to eliminate any potential vulnerabilities, backdoors, malware, or system
exploits. The AOS source code is analyzed for these items and is also used to develop source
assisted white box and black box vulnerability tests. The tests are subsequently executed on
the general availability software images provided by Alcatel-Lucent Enterprise to ensure the
integrity of the software.

Software diversification
An attacker needs to know the precise address of the buffer where the packet will be loaded
during the buffer overload condition and know the address of the code they need to execute to
have the software jump to an address location that enables the malicious program to execute
code which changes the operation of the switch. Determining these addresses is a very difficult
process requiring much trial and error. However, once these addresses are determined, the
attacker develops the malicious packet payload. If they are unable to determine the needed
addresses, they cannot develop an attack packet.

Without ASLR, the attacker could do this trial and error process on one switch and once they
determine the addresses, apply this attack to all switches running the same software.

ASLR changes the behavior of the virtual memory management system to randomize the location
of the different segments on each execution. Code, stack, heap (data) and library segments, will
have random locations on each execution. Since the addresses are changed on each bootup, it
would be unlikely, or nearly impossible, for an attacker to learn their target addresses by trial
and error.

The ALE AOS is extensively tested to reject overflow packets and prevent buffer overflows.
ALSR provides an added layer of protection.

4

Application Note
Securing the network with secure diversified code

AOS ASLR evolution
Moving AOS to ASLR has been a significant development upgrade. Before AOS 8.5.R04, ASLR
was enabled for the Linux kernel and some dynamic libraries. The kernel option “randomize_
va_space” was enabled. Several dynamically loaded libraries had the “-fPIC” flag set to generate
position-independent code. With the “-fPIC” flag set, these libraries are located randomly in
virtual address space.

AOS 8.6.R01 completes the ASLR changes. ASLR was enabled on AOS applications using the
“-fPIE” compile option. The position independent executable flag allows AOS applications to be
in virtual memory according to the Linux kernel randomization. A quick overview of PIE can be
found at: http://www.openbsd.org/papers/nycbsdcon08-pie/.

Existing ASLR changes in AOS 8.5.R04

Kernel randomization

Linux randomization can be seen by looking at the randomize flag. The command set below
displays the flag.

6860E-U28_13_1A_13-> su

Entering maintenance shell. Type “exit” when you are done.

SHASTA #-> sysctl -a |grep “randomize”

kernel.randomize_va_space = 2

The flag definitions are:

0 = randomization disabled

1 = randomization enabled (Stack, virtual dynamic shared objects, shared memory)

2 = randomization enabled (1 plus data segments)

AOS 8.5.R04 randomization in chassis manager

The randomization of the application segment can be seen by dumping the memory maps for
any process between multiple reboots. Task vcmCMM is shown.

Enter the bash shell, if not already in the shell.

6860E-U28_13_1A_13-> su

Entering maintenance shell. Type “exit” when you are done.

Dump the process id of the vcmCmm task.

SHASTA #-> ps -ef | grep vcmCmm

2226 root 0:00 /bin/vcmCmm

5666 root 0:00 grep vcmCmm

http://www.openbsd.org/papers/nycbsdcon08-pie/

5

Application Note
Securing the network with secure diversified code

Dump the memory map for the task. Replace 2226 by the task id printed in the above
command. The memory ranges of the many libraries are removed from the output listed below
for clarity. The segments listed are the ones of importance for this demonstration. These runs
were on an OmniSwitch 6860-U28.

SHASTA #-> cat /proc/2226/maps

00008000-00275000 r-xp 00000000 00:01 3039 /bin/vcmCmm

0027c000-00299000 rw-p 0026c000 00:01 3039 /bin/vcmCmm

0228b000-022ac000 rw-p 00000000 00:00 0 	 [heap]

bef63000-befd5000 rw-p 00000000 00:00 0 	 [stack]

Reboot the switch to cause a new randomization. Then repeat the same steps to obtain new
addresses. The second bootup address from a sample run are:

SHASTA #-> cat /proc/2227/maps

00008000-00275000 r-xp 00000000 00:01 805 /bin/vcmCmm

0027c000-00299000 rw-p 0026c000 00:01 805 /bin/vcmCmm

008fa000-0091b000 rw-p 00000000 00:00 0 [heap]

be8ae000-be920000 rw-p 00000000 00:00 0 [stack]

The addresses of the two runs can be compared.

Run 1 Run 2

/bin/vcmCmm Code segment 1 00008000 00008000

/bin/vcmCmm Code segment 2 0027c000 0027c000

heap 0228b000 008fa000

stack bef63000 be8ae000

With AOS 8.5.R04 the two code segments are at fixed addresses while the heap and stack are
assigned randomly.

6

Application Note
Securing the network with secure diversified code

Additional ASLR changes in AOS 8.6.R01

Previous ASLR status in AOS 8.6.R01

The same commands used for AOS 8.5.R04 can be used to verify that the Linux kernel, the
application stack segment, and heap are randomized in AOS 8.6.R02.

Randomization of the code segment

The final piece of ASLR added in AOS 8.6.R01 was randomizing the code segment address. This
can be seen by dumping the code segment address on multiple reboots with AOS 8.6.R02. This is
using the same commands as with AOS 8.5.R04.

6860E-U28_13_1A_13-> su

Entering maintenance shell. Type “exit” when you are done.

SHASTA #-> ps -ef | grep vcmCmm

 3699 root 0:00 /bin/vcmCmm

SHASTA #-> cat /proc/3699/maps

Run 1

68c6000-b6b36000 r-xp 00000000 00:01 1537 	/bin/vcmCmm

b6b36000-b6b53000 rw-p 00270000 00:01 1537 /bin/vcmCmm

b7738000-b7759000 rw-p 00000000 00:00 0 	[heap]

be93e000-be9b0000 rw-p 00000000 00:00 0 	 [stack]

Run 2

b693c000-b6bac000 r-xp 00000000 00:01 3460 /bin/vcmCmm

b6bac000-b6bc9000 rw-p 00270000 00:01 3460 /bin/vcmCmm

b7bb2000-b7bd3000 rw-p 00000000 00:00 0 	[heap]

be7e4000-be856000 rw-p 00000000 00:00 0 	[stack]

Comparison:

Run 1 Run 2

/bin/vcmCmm Code segment 1 68c6000 b6b36000

/bin/vcmCmm Code segment 2 b6b3600 b6bac000

heap b7738000 b7bb2000

stack be93e000 be7e4000

In the sample runs the code segment is now different between runs.

7

Application Note
Securing the network with secure diversified code

Deeper dive into the address changes
To better understand how ASLR affects the movement of data, a small program can be executed
on the switch. This shows that actual variable locations are changing and not just the segment
start. This same detail can be obtained on AOS applications with gdb debugger, but is much
harder to visualize. This sample program displays a variable in each of the code, stack and heap
segments.

Sample program

#include <stdio.h>

#include <stdlib.h>

void* getAddr () {

 return __builtin_return_address(0)-0x5;

};

int main()

{

 void *p = calloc(10000,1);

 void *addr = getAddr();

 printf(“Code: %p\nstack %p\nheap:%p\n”,

 addr, __builtin_frame_address(0), p);

 return 0;

}

Run without ASLR

The sample program was run on an OmniSwitch 9900. Kernel ASLR is disabled to show the
results with no ASLR. The small program is then executed multiple times. All segments have the
same address between executions for both the no ‘-fPIE’ and PIE compile programs. An attacker
would know that the address would be the same across all switches and reboots.

Command to disable kernel ASLR.

MHOST # sysctl -w kernel.randomize_va_space=0

kernel.randomize_va_space = 0

Results from 2 runs of the no PIE and 2 results from the PIE.

Run 1 no PIE Run 2 no PIE Run 3 PIE Run 4 PIE

Code 0x400586 0x400586 0x555555554886 0x555555554886

Stack 0x7fffffffecd0 0x7fffffffecd0 0x7fffffffecc0 0x7fffffffecc0

Heap 0x601010 0x601010 0x555555755010 0x555555755010

www.al-enterprise.com The Alcatel-Lucent name and logo are trademarks of Nokia used under license
by ALE. To view other trademarks used by affiliated companies of ALE Holding, visit: www.al-enterprise.
com/en/legal/trademarks-copyright. All other trademarks are the property of their respective owners.
The information presented is subject to change without notice. Neither ALE Holding nor any of
its affiliates assumes any responsibility for inaccuracies contained herein. © Copyright 2020
ALE International, ALE USA Inc. All rights reserved in all countries. DID20061501 (June 2020)

Run with ASLR

The sample program was run on an OmniSwitch 9900. Kernel ASLR is enabled to show the
results of kernel ASLR on applications using “-fPIE” and not using PIE. The small program is then
executed multiple times. The stack and heap segments are randomized on each execution for all
trials. Only the version compiled with “-fPIE” has the code segment randomized.

Command to enable kernel ASLR. Note that AOS 8.6.R02 has kernel randomization on by default.

MHOST # sysctl -w kernel.randomize_va_space=2

kernel.randomize_va_space = 2

Results from two runs of the no PIE and two results from the PIE.

Run 1 no PIE Run 2 no PIE Run 3 PIE Run 4 PIE

Code 0x400586 0x400586 0x7f13d8753886 0x7f7124aea886

Stack 0x7ffe987f8930 0x7fff7a97a200 0x7ffeb9aca730 0x7ffcd1b9e8f0

Heap 0x1f30010 0xc43010 0x7f13d8b23010 0x7f71260f2010

Summary
Current and future threats to a network are being addressed by using secured diversified code
technology that is applied to every new operating system release from ALE. Alcatel-Lucent
Enterprise’s secure diversified code uses software diversification and independent verification
and validation to protect networks.

Every day there are a growing number of intrinsic vulnerabilities, code exploits and embedded
malware as well as potential back doors that can compromise any business. These threats
are being stopped with the Alcatel-Lucent Enterprise solution using address space layout
randomization that prevents buffer overflow attacks.

https://www.al-enterprise.com/?utm_source=digital-asset&utm_medium=pdf&utm_campaign=doc-link
https://www.al-enterprise.com/en/legal/trademarks-copyright?utm_source=digital-asset&utm_medium=pdf&utm_campaign=doc-link
https://www.al-enterprise.com/en/legal/trademarks-copyright?utm_source=digital-asset&utm_medium=pdf&utm_campaign=doc-link

